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Figure 1: Pixel-aligned Implicit function (PIFu): We present pixel-aligned implicit function (PIFu), which allows recovery
of high-resolution 3D textured surfaces of clothed humans from a single input image (top row). Our approach can digitize
intricate variations in clothing, such as wrinkled skirts and high-heels, including complex hairstyles. The shape and textures
can be fully recovered including largely unseen regions such as the back of the subject. PIFu can also be naturally extended to
multi-view input images (bottom row).

Abstract
We introduce Pixel-aligned Implicit Function (PIFu), a

highly effective implicit representation that locally aligns
pixels of 2D images with the global context of their cor-
responding 3D object. Using PIFu, we propose an end-
to-end deep learning method for digitizing highly detailed
clothed humans that can infer both 3D surface and texture
from a single image, and optionally, multiple input images.
Highly intricate shapes, such as hairstyles, clothing, as well
as their variations and deformations can be digitized in
a unified way. Compared to existing representations used
for 3D deep learning, PIFu can produce high-resolution
surfaces including largely unseen regions such as the back
of a person. In particular, it is memory efficient unlike the
voxel representation, can handle arbitrary topology, and the

* - indicates equal contribution

resulting surface is spatially aligned with the input image.
Furthermore, while previous techniques are designed to
process either a single image or multiple views, PIFu extends
naturally to arbitrary number of views. We demonstrate
high-resolution and robust reconstructions on real world
images from the DeepFashion dataset, which contains a
variety of challenging clothing types. Our method achieves
state-of-the-art performance on a public benchmark and
outperforms the prior work for clothed human digitization
from a single image. The project website can be found at
https://shunsukesaito.github.io/PIFu/

1. Introduction

In an era where immersive technologies and sensor-
packed autonomous systems are becoming increasingly
prevalent, our ability to create virtual 3D content at scale
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goes hand-in-hand with our ability to digitize and understand
3D objects in the wild. If digitizing an entire object in
3D would be as simple as taking a picture, there would be
no need for sophisticated 3D scanning devices, multi-view
stereo algorithms, or tedious capture procedures, where a
sensor needs to be moved around.

For certain domain-specific objects, such as faces, human
bodies, or known man made objects, it is already possible
to infer relatively accurate 3D surfaces from images with
the help of parametric models, data-driven techniques, or
deep neural networks. Recent 3D deep learning advances
have shown that general shapes can be inferred from very
few images and sometimes even a single input. However,
the resulting resolutions and accuracy are typically limited,
due to ineffective model representations, even for domain
specific modeling tasks.

We propose a new Pixel-aligned Implicit Function (PIFu)
representation for 3D deep learning and focus on the chal-
lenging problem of textured surface inference of clothed 3D
humans from a single or multiple input images. While most
successful deep learning methods for 2D image processing
(e.g., semantic segmentation [51], 2D joint detection [56],
etc.) take advantage of “fully-convolutional” network
architectures that preserve the spatial alignment between
the image and the output, this is particularly challenging
in the 3D domain. While voxel representations [58] can
be applied in a fully-convolutional manner, the memory
intensive nature of the representation inherently restrict its
ability to produce fine-scale detailed surfaces. Inference
techniques based on global representations [19, 30, 44] are
more memory efficient, but cannot guarantee that details of
input images are preserved. Similarly, methods based on
implicit functions [11, 44, 38] rely on the global context of
the image to infer the overall shape, which may not align
with the input image accurately. On the other hand, PIFu
aligns individual local features at the pixel level to the global
context of the entire object in a fully convolutional manner,
and does not require high memory usage, as in voxel-based
representations. This is particularly relevant for the 3D
reconstruction of clothed subjects, whose shape can be of
arbitrary topology, highly deformable and highly detailed.

Specifically, we train an encoder to learn individual
feature vectors for each pixel of an image that takes into
account the global context relative to its position. Given this
per-pixel feature vector and a specified z-depth along the
outgoing camera ray from this pixel, we learn an implicit
function that can classify whether a 3D point corresponding
to this z-depth is inside or outside the surface. In particular,
our feature vector spatially aligns the global 3D surface
shape to the pixel, which allows us to preserve local details
present in the input image while inferring plausible ones in
unseen regions.

Our end-to-end and unified digitization approach can
directly predict high-resolution 3D shapes of a person with
complex hairstyles and wearing arbitrary clothing. Despite

the amount of unseen regions, particularly for a single-view
input, our method can generate a complete model similar
to ones obtained from multi-view stereo photogrammetry
or other 3D scanning techniques. As shown in Figure 1,
our algorithm can handle a wide range of complex clothing,
such as skirts, scarfs, and even high-heels while capturing
high frequency details such as wrinkles that match the input
image at the pixel level.

By simply adopting the implicit function to regress RGB
values at each queried point along the ray, PIFu can be
naturally extended to infer per-vertex colors. Hence, our
digitization framework also generates a complete texture of
the surface, while predicting plausible appearance details
in unseen regions. Through additional multi-view stereo
constraints, PIFu can also be naturally extended to handle
multiple input images, as is often desired for practical
human capture settings. Since producing a complete textured
mesh is already possible from a single input image, adding
more views only improves our results further by providing
additional information for unseen regions.

We demonstrate the effectiveness and accuracy of our
approach on a wide range of challenging real-world and
unconstrained images of clothed subjects. We also show
for the first time, high-resolution examples of monocular
and textured 3D reconstructions of dynamic clothed human
bodies reconstructed from a video sequence. We provide
comprehensive evaluations of our method using ground truth
3D scan datasets obtained using high-end photogrammetry.
We compare our method with prior work and demonstrate
the state-of-the-art performance on a public benchmark for
digitizing clothed humans.

2. Related Work

Single-View 3D Human Digitization. Single-view digiti-
zation techniques require strong priors due to the ambiguous
nature of the problem. Thus, parametric models of human
bodies and shapes [4, 35] are widely used for digitizing
humans from input images. Silhouettes and other types
of manual annotations [20, 70] are often used to initialize
the fitting of a statistical body model to images. Bogo et
al. [8] proposed a fully automated pipeline for unconstrained
input data. Recent methods involve deep neural networks
to improve the robustness of pose and shape parameters
estimations for highly challenging images [30, 46]. Methods
that involve part segmentation as input [33, 42] can produce
more accurate fittings. Despite their capability to capture
human body measurements and motions, parametric models
only produce a naked human body. The 3D surfaces of
clothing, hair, and other accessories are fully ignored. For
skin-tight clothing, a displacement vector for each vertex is
sometimes used to model some level of clothing as shown
in [2, 65, 1]. Nevertheless, these techniques fail for more
complex topology such as dresses, skirts, and long hair. To
address this issue, template-free methods such as BodyNet
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[58] learn to directly generate a voxel representation of
the person using a deep neural network. Due to the high
memory requirements of voxel representations, fine-scale
details are often missing in the output. More recently, [39]
introduced a multi-view inference approach by synthesizing
novel silhouette views from a single image. While multi-
view silhouettes are more memory efficient, concave regions
are difficult to infer as well as consistently generated views.
Consequentially, fine-scale details cannot be produced
reliably. In contrast, PIFu is memory efficient and is able
to capture fine-scale details present in the image, as well as
predict per-vertex colors.
Multi-View 3D Human Digitization. Multi-view acquisi-
tion methods are designed to produce a complete model of
a person and simplify the reconstruction problem, but are
often limited to studio settings and calibrated sensors. Early
attempts are based on visual hulls [37, 60, 15, 14] which
uses silhouettes from multiple views to carve out the visible
areas of a capture volume. Reasonable reconstructions can
be obtained when large numbers of cameras are used, but
concavities are inherently challenging to handle. More
accurate geometries can be obtained using multi-view stereo
constraints [55, 73, 63, 16] or using controlled illumination,
such as multi-view photometric stereo techniques [61, 66].
Several methods use parametric body models to further
guide the digitization process [54, 17, 5, 25, 3, 1]. The
use of motion cues has also been introduced as additional
priors [47, 68]. While it is clear that multi-view capture tech-
niques outperform single-view ones, they are significantly
less flexible and deployable.

A middle ground solution consists of using deep learning
frameworks to generate plausible 3D surfaces from very
sparse views. [12] train a 3D convolutional LSTM to
predict the 3D voxel representation of objects from arbitrary
views. [32] combine information from arbitrary views using
differentiable unprojection operations. [28] also uses a
similar approach, but requires at least two views. All of
these techniques rely on the use of voxels, which is memory
intensive and prevents the capture of high-frequency details.
[26, 18] introduced a deep learning approach based on a
volumetric occupancy field that can capture dynamic clothed
human performances using very sparse views as input. At
least three views are required for these methods to produce
reasonable output.
Texture Inference. When reconstructing a 3D model from
a single image, the texture can be easily sampled from the
input. However, the appearance in occluded regions needs
to be inferred in order to obtain a complete texture. Related
to the problem of 3D texture inference are view-synthesis
approaches that predict novel views from a single image
[71, 43]. Within the context of texture mesh inference of
clothed human bodies, [39] introduced a view synthesis
technique that can predict the back view from the front one.
Both front and back views are then used to texture the final
3D mesh, however self-occluding regions and side views

cannot be handled. Akin to the image inpainting problem
[45], [40] inpaints UV images that are sampled from the
output of detected surface points, and [57, 22] infers per
voxel colors, but the output resolution is very limited. [31]
directly predicts RGB values on a UV parameterization, but
their technique can only handle shapes with known topology
and are therefore not suitable for clothing inference. Our
proposed method can predict per vertex colors in an end-to-
end fashion and can handle surfaces with arbitrary topology.

3. PIFu: Pixel-Aligned Implicit Function
Given a single or multi-view images, our goal is to

reconstruct the underlining 3D geometry and texture of a
clothed human while preserving the detail present in the
image. To this end, we introduce Pixel-Aligned Implicit
Functions (PIFu) which is a memory efficient and spatially-
aligned 3D representation for 3D surfaces. An implicit
function defines a surface as a level set of a function f ,
e.g. f(X) = 0 [50]. This results in a memory efficient
representation of a surface where the space in which the
surface is embedded does not need to be explicitly stored.
The proposed pixel-aligned implicit function consists of
a fully convolutional image encoder g and a continuous
implicit function f represented by multi-layer perceptrons
(MLPs), where the surface is defined as a level set of

f(F (x), z(X)) = s : s ∈ R, (1)

where for a 3D point X , x = π(X) is its 2D projection,
z(X) is the depth value in the camera coordinate space,
F (x) = g(I(x)) is the image feature at x. We assume
a weak-perspective camera, but extending to perspective
cameras is straightforward. Note that we obtain the pixel-
aligned feature F (x) using bilinear sampling, because the
2D projection of X is defined in a continuous space rather
than a discrete one (i.e., pixel).

The key observation is that we learn an implicit function
over the 3D space with pixel-aligned image features rather
than global features, which allows the learned functions to
preserve the local detail present in the image. The continuous
nature of PIFu allows us to generate detailed geometry with
arbitrary topology in a memory efficient manner. Moreover,
PIFu can be cast as a general framework that can be extended
to various co-domains such as RGB colors.

Digitization Pipeline. Figure 2 illustrates the overview of
our framework. Given an input image, PIFu for surface
reconstruction predicts the continuous inside/outside prob-
ability field of a clothed human, in which iso-surface can
be easily extracted (Sec. 3.1). Similarly, PIFu for texture
inference (Tex-PIFu) outputs an RGB value at 3D positions
of the surface geometry, enabling texture inference in self-
occluded surface regions and shapes of arbitrary topology
(Sec. 3.2). Furthermore, we show that the proposed approach
can handle single-view and multi-view input naturally, which
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Figure 2: Overview of our clothed human digitization pipeline: Given an input image, a pixel-aligned implicit function
(PIFu) predicts the continuous inside/outside probability field of a clothed human. Similarly, PIFu for texture inference
(Tex-PIFu) infers an RGB value at given 3D positions of the surface geometry with arbitrary topology.

allows us to produce even higher fidelity results when more
views are available (Sec. 3.3).

3.1. Single-view Surface Reconstruction

For surface reconstruction, we represent the ground truth
surface as a 0.5 level-set of a continuous 3D occupancy field:

f∗v (X) =

{
1, if X is inside mesh surface
0, otherwise

. (2)

We train a pixel-aligned implicit function (PIFu) fv by
minimizing the average of mean squared error:

LV =
1

n

n∑
i=1

|fv(FV (xi), z(Xi))− f∗v (Xi)|2, (3)

whereXi ∈ R3, FV (x) = g(I(x)) is the image feature from
the image encoder g at x = π(X) and n is the number of
sampled points. Given a pair of an input image and the cor-
responding 3D mesh that is spatially aligned with the input
image, the parameters of the image encoder g and PIFu fv
are jointly updated by minimizing Eq. 3. As Bansal et al. [6]
demonstrate for semantic segmentation, training an image
encoder with a subset of pixels does not hurt convergence
compared with training with all the pixels. During inference,
we densely sample the probability field over the 3D space
and extract the iso-surface of the probability field at threshold
0.5 using the Marching Cube algorithm [36]. This implicit
surface representation is suitable for detailed objects with
arbitrary topology. Aside from PIFu’s expressiveness and
memory-efficiency, we develop a spatial sampling strategy

and network architecture that is critical for achieving high-
fidelity inference. Please refer to the supplemental materials
for our network architecture and training procedure.

Spatial Sampling. The resolution of the training data
plays a central role in achieving the expressiveness and
accuracy of our implicit function. Unlike voxel-based
methods, our approach does not require discretization of
ground truth 3D meshes. Instead, we can directly sample
3D points on the fly from the ground truth mesh in the
original resolution using an efficient ray tracing algorithm
[62]. Note that this operation requires water-tight meshes. In
the case of non-watertight meshes, one can use off-the-shelf
solutions to make the meshes watertight [7]. Additionally,
we observe that the sampling strategy can largely influence
the final reconstruction quality. If one uniformly samples
points in the 3D space, the majority of points are far
from the iso-surface, which would unnecessarily weight
the network toward outside predictions. On the other hand,
sampling only around the iso-surface can cause overfitting.
Consequently, we propose to combine uniform sampling
and adaptive sampling based on the surface geometry. We
first randomly sample points on the surface geometry and
add offsets with normal distribution N (0, σ) (σ = 5.0 cm
in our experiments) for x, y, and z axis to perturb their
positions around the surface. We combine those samples
with uniformly sampled points within bounding boxes using
a ratio of 16 : 1. We provide an ablation study on our
sampling strategy in the supplemental materials.
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3.2. Texture Inference
While texture inference is often performed on either a

2D parameterization of the surface [31, 21] or in view-space
[39], PIFu enables us to directly predict the RGB colors on
the surface geometry by defining s in Eq. 1 as an RGB vector
field instead of a scalar field. This supports texturing of
shapes with arbitrary topology and self-occlusion. However,
extending PIFu to color prediction is a non-trivial task as
RGB colors are defined only on the surface while the 3D
occupancy field is defined over the entire 3D space. Here,
we highlight the modification of PIFu in terms of training
procedure and network architecture.

Given sampled 3D points on the surface X ∈ Ω, the
objective function for texture inference is the average of L1
error of the sampled colors as follows:

LC =
1

n

n∑
i=1

|fc(FC(xi), z(Xi))− C(Xi)|, (4)

where C(Xi) is the ground truth RGB value on the surface
point Xi ∈ Ω and n is the number of sampled points. We
found that naively training fc with the loss function above
severely suffers from overfitting. The problem is that fc is
expected to learn not only RGB color on the surface but
also the underlining 3D surfaces of the object so that fc can
infer texture of unseen surface with different pose and shape
during inference, which poses a significant challenge. We
address this problem with the following modifications. First,
we condition the image encoder for texture inference with
the image features learned for the surface reconstruction FV .
This way, the image encoder can focus on color inference
of a given geometry even if unseen objects have different
shape, pose, or topology. Additionally, we introduce an
offset ε ∼ N (0, d) to the surface points along the surface
normal N so that the color can be defined not only on the
exact surface but also on the 3D space around it. With the
modifications above, the training objective function can be
rewritten as:

LC =
1

n

n∑
i=1

∣∣fc(FC(x′i, FV ), X ′i,z)− C(Xi)
∣∣, (5)

where X ′i = Xi + ε · Ni. We use d = 1.0 cm for all the
experiments. Please refer to the supplemental material for
the network architecture for texture inference.

3.3. Multi-View Stereo
Additional views provide more coverage about the person

and should improve the digitization accuracy. Our formula-
tion of PIFu provides the option to incorporate information
from more views for both surface reconstruction and texture
inference. We achieve this by using PIFu to learn a feature
embedding for every 3D point in space. Specifically the
output domain of Eq. 1 is now a n-dimensional vector

!"(Φ%, … ,Φ() = +,  Φ, = !%(-, ., , /,(0))

Multi-View PIFu

- -% -(

0

. = 1(0)

/(0)

!(- . , /(0)) = +

PIFu

0

⋯.% = 1%(0) .( = 1((0)

/%(0) /((0)

! = f" ∘ f%

Figure 3: Multi-view PIFu: PIFu can be extended to
support multi-view inputs by decomposing implicit function
f into a feature embedding function f1 and a multi-view
reasoning function f2. f1 computes a feature embedding
from each view in the 3D world coordinate system, which
allows aggregation from arbitrary views. f2 takes aggregated
feature vector to make a more informed 3D surface and
texture prediction.

space s ∈ Rn that represents the latent feature embedding
associated with the specified 3D coordinate and the image
feature from each view. Since this embedding is defined
in the 3D world coordinate space, we can aggregate the
embedding from all available views that share the same 3D
point. The aggregated feature vector can be used to make a
more confident prediction of the surface and the texture.

Specifically we decompose the pixel-aligned function
f into a feature embedding network f1 and a multi-view
reasoning network f2 as f := f2 ◦ f1. See Figure 3 for
illustrations. The first function f1 encodes the image feature
Fi(xi) : xi = πi(X) and depth value zi(X) from each view
point i into latent feature embedding Φi. This allows us
to aggregate the corresponding pixel features from all the
views. Now that the corresponding 3D point X is shared by
different views, each image can project X on its own image
coordinate system by πi(X) and zi(X). Then, we aggregate
the latent features Φi by average pooling operation and
obtain the fused embedding Φ̄ = mean({Φi}). The second
function f2 maps from the aggregated embedding Φ̄ to our
target implicit field s (i.e., inside/outside probability for
surface reconstruction and RGB value for texture inference).
The additive nature of the latent embedding allows us to
incorporate arbitrary number of inputs. Note that a single-
view input can be also handled without modification in the
same framework as the average operation simply returns the
original latent embedding. For training, we use the same
training procedure as the aforementioned single-view cases
including loss functions and the point sampling scheme.
While we train with three random views, our experiments
show that the model can incorporate information from more
than three views (See Sec. 4).
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reconstructed geometry textured reconstructioninput

Figure 4: Qualitative single-view results on real images from DeepFashion dataset [34]. The proposed Pixel-Aligned
Implicit Functions, PIFu, plays a key role to achieve a topology-free, memory efficient, spatially-aligned 3D reconstruction of
geometry and texture of clothed human.

4. Experiments

We evaluate our proposed approach on a variety of
datasets, including RenderPeople [48] and BUFF [69], which
has ground truth measurements, as well as DeepFashion [34]
which contains a diverse variety of complex clothing.

4.1. Quantitative Results

We quantitatively evaluate our reconstruction accuracy
with three different metrics. In the model space, we measure
the average point-to-surface Euclidean distance (P2S) in cm
from the vertices on the reconstructed surface to the ground
truth. We also measure the Chamfer distance between the
reconstructed and the ground truth surfaces. In addition,
we introduce the normal reprojection error to measure
the fineness of reconstructed local details, as well as the
projection consistency from the input image. For both
reconstructed and ground truth surfaces, we render their
normal maps in the image space from the input viewpoint
respectively. We then calculate the L2 error between these
two normal maps.
Single-View Reconstruction. In Table 1 and Figure 5, we
evaluate the reconstruction errors for each method on both
Buff and RenderPeople test set. Note that while Voxel
Regression Network (VRN) [27], IM-GAN [11], and ours
are retrained with the same High-Fidelity Clothed Human
dataset we use for our approach, the reconstruction of
[39, 58] are obtained from their trained models as off-the-
shelf solutions. In contrast to the state-of-the-art single-view
reconstruction method using implicit function (IM-GAN)
[10] that reconstruct surface from one global feature per

image, our method outputs pixel-aligned high-resolution
surface reconstruction that captures hair styles and wrinkles
of the clothing. We also demonstrate the expressiveness of
our PIFu representation compared with voxels. Although
VRN and ours share the same network architecture for
the image encoder, the higher expressiveness of implicit
representation allows us to achieve higher fidelity.

In Figure 6, we also compare our single-view texture
inferences with a state-of-the-art texture inference method
on clothed human, SiCloPe [39], which infers a 2D image
from the back view and stitches it together with the input
front-view image to obtain textured meshes. While SiCloPe
suffers from projection distortion and artifacts around the
silhouette boundary, our approach predicts textures on the
surface mesh directly, removing projection artifacts.

Multi-View Reconstruction. In Table 2 and Figure 7, we
compare our multi-view reconstruction with other deep
learning-based multi-view methods including voxel-based
multi-view stereo machine, LSM [32], and a deep visual hull
method proposed by Huang et al. [24]. All approaches are
trained on the same High-Fidelity Clothed Human Dataset
using three-view input images. Note that Huang et al.
can be seen as a degeneration of our method where the
multi-view feature fusion process solely relies on image
features, without explicit conditioning on the 3D coordinate
information. To evaluate the importance of conditioning on
the depth, we denote our network architecture removing z
from input of PIFu as Huang et al. in our experiments. We
demonstrate that PIFu achieves the state-of-the-art recon-
struction qualitatively and quantitatively in our metrics. We
also show that our multi-view PIFu allows us to increasingly
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ours VRN IM-GAN SiCloPe BodyNet

Figure 5: Comparison with other human digitization methods from a single image. For each input image on the left, we
show the predicted surface (top row), surface normal (middle row), and the point-to-surface errors (bottom row).

SiCloPe ours

input

Figure 6: Comparison with SiCloPe [39] on texture inference.
While texture inference via a view synthesis approach suffers
from projection artifacts, proposed approach does not as it directly
inpaints textures on the surface geometry.

LSM [Huang et al.] oursinput

Figure 7: Comparison with learning-based multi-view meth-
ods. Ours outperforms other learning-based multi-view methods
qualitatively and quantitatively. Note that all methods are trained
with three view inputs from the same training data.
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1 view 6 view 9 view3 view

Figure 8: Our surface and texture predictions increasingly
improve as more views are added.

RenderPeople Buff
Methods Normal P2S Chamfer Normal P2S Chamfer
BodyNet 0.262 5.72 5.64 0.308 4.94 4.52
SiCloPe 0.216 3.81 4.02 0.222 4.06 3.99
IM-GAN 0.258 2.87 3.14 0.337 5.11 5.32
VRN 0.116 1.42 1.56 0.130 2.33 2.48
Ours 0.084 1.52 1.50 0.0928 1.15 1.14

Table 1: Quantitative evaluation on RenderPeople and BUFF
dataset for single-view reoncstruction.

refine the geometry and texture by incorporating arbitrary
number of views in Figure 8.

4.2. Qualitative Results
In Figure 4, we present our digitization results using

real world input images from the DeepFashion dataset [34].
We demonstrate our PIFu can handle wide varieties of
clothing, including skirts, jackets, and dresses. Our method
can produce high-resolution local details, while inferring
plausible 3D surfaces in unseen regions. Complete textures
are also inferred successfully from a single input image,
which allows us to view our 3D models from 360 degrees.
We refer to the supplemental video2 for additional static
and dynamic results. In particular, we show how dynamic
clothed human performances and complex deformations can
be digitized in 3D from a single 2D input video.

5. Discussion
We introduced a novel pixel-aligned implicit function,

which spatially aligns the pixel-level information of the
input image with the shape of the 3D object, for deep

2https://youtu.be/S1FpjwKqtPs

RenderPeople Buff
Methods Normal P2S Chamfer Normal P2S Chamfer
LSM 0.251 4.40 3.93 0.272 3.58 3.30
Deep V-Hull 0.093 0.639 0.632 0.119 0.698 0.709
Ours 0.094 0.554 0.567 0.107 0.665 0.641

Table 2: Quantitative comparison between multi-view
reconstruction algorithms using 3 views.

input reconstruction input reconstruction

Figure 9: PIFu trained on general objects reveals new
challenges to be addressed in future.

learning based 3D shape and texture inference of clothed
humans from a single input image. Our experiments
indicate that highly plausible geometry can be inferred
including largely unseen regions such as the back of a
person, while preserving high-frequency details present
in the image. Unlike voxel-based representations, our
method can produce high-resolution output since we are
not limited by the high memory requirements of volumetric
representations. Furthermore, we also demonstrate how this
method can be naturally extended to infer the entire texture
on a person given partial observations. Unlike existing
methods, which synthesize the back regions based on frontal
views in an image space, our approach can predict colors in
unseen, concave and side regions directly on the surface. In
particular, our method is the first approach that can inpaint
textures for shapes of arbitrary topology. Since we are
capable for generating textured 3D surfaces of a clothed
person from a single RGB camera, we are moving a step
closer toward monocular reconstructions of dynamic scenes
from video without the need of a template model. Our ability
to handle arbitrary additional views also makes our approach
particularly suitable for practical and efficient 3D modeling
settings using sparse views, where traditional multi-view
stereo or structure-from-motion would fail.

Future Work. While our texture predictions are reason-
able and not limited by the topology or parameterization of
the inferred 3D surface, we believe that higher resolution
appearances can be inferred, possibly using generative
adversarial networks. In this work, we focused largely on
clothed human surfaces. A natural question is how it extends
to general object shapes. Our preliminary experiments on
the ShapeNet dataset [9] in a class agnostic setting reveals
new challenges as shown in Figure 9. We speculate that
the greater variety of object shapes makes it difficult to
learn a globally coherent shape from pixel-level features,
which future work can address. Lastly, in all our examples,

8
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none of the segmented subjects are occluded by any other
objects or scene elements. In real-world settings, occlusions
often occur and perhaps only a part of the body is framed
in the camera. Being able to digitize and predict complete
objects in partially visible settings could be highly valuable
for analyzing humans in unconstrained settings. Whether it
will be an end-to-end approach or a sophisticated system, we
believe that it will be eventually possible to digitize arbitrary
3D objects from a single RGB input, and PIFu represents an
important building block toward this goal.
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Appendix I. Implementation Details
Experimental Setup. Since there is no large scale datasets
for high-resolution clothed humans, we collected photogrammetry
data of 491 high-quality textured human meshes with a wide range
of clothing, shapes, and poses, each consisting of about 100, 000
triangles from RenderPeople3. We refer to this database as High-
Fidelity Clothed Human Data set. We randomly split the dataset
into a training set of 442 subjects and a test set of 49 subjects. To
efficiently render the digital humans, Lambertian diffuse shading
with surface normal and spherical harmonics are typically used
due to its simplicity and efficiency [59, 39]. However, we found
that to achieve high-fidelity reconstructions on real images, the
synthetic renderings need to correctly simulate light transport
effects resulting from both global and local geometric properties
such as ambient occlusion. To this end, we use a precomputed
radiance transfer technique (PRT) that precomputes visibility on
the surface using spherical harmonics and efficiently represents
global light transport effects by multiplying spherical harmonics
coefficients of illumination and visibility [53]. PRT only needs
to be computed once per object and can be reused with arbitrary
illuminations and camera angles. Together with PRT, we use 163
second-order spherical harmonics of indoor scene from HDRI
Haven4 using random rotations around y axis. We render the
images by aligning subjects to the image center using a weak-
perspective camera model and image resolution of 512× 512. We
also rotate the subjects for 360 degrees in yaw axis, resulting in
360 × 442 = 159, 120 images for training. For the evaluation,
we render 49 subjects from RenderPeople and 5 subjects from the
BUFF data set [69] using 4 views spanning every 90 degrees in
yaw axis. Note that we render the images without the background.
We also test our approach on real images of humans from the
DeepFashion data set [34]. In the case of real data, we use a off-
the-shelf semantic segmentation network together with Grab-Cut
refinement [49].

Network Architecture. Since the framework of PIFu is not
limited to a specific network architecture, one can technically
use any fully convolutional neural network as the image encoder.
For surface reconstruction, we found that sequential architectures
proposed for human pose estimations [64, 41] are effective for
human digitization with better generalization on real images. We
believe this is because such an architecture increasingly refines
the prediction by incorporating long-range geometric structure.
We adapt the stacked hourglass network [41] with modifications
proposed by [27]. We also replace batch normalization with group
normalization [67], which improves the training stability when the
batch sizes are small. Similar to [27], the intermediate features
of each stack are fed into PIFu, and the losses from all the stacks
are aggregated for parameter update. We have conducted ablation
study on the network architecture design and compare against
other alternatives (VGG16, ResNet34) in Appendix II. The image
encoder for texture inference adopts the architecture of CycleGAN
[72] consisting of 6 residual blocks [29]. Instead of using transpose
convolutions to upsample the latent features, we directly feed the
output of the residual blocks to the following Tex-PIFu.

PIFu for surface reconstruction is based on a multi-layer percep-

3https://renderpeople.com/3d-people/
4https://hdrihaven.com/
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tron, where the number of neurons is (257, 1024, 512, 256, 128, 1)
with non-linear activations using leaky ReLU except the last layer
that uses sigmoid activation. To effectively propagate the depth
information, each layer of MLP has skip connections from the
image feature F (x) ∈ R256 and depth z in spirit of [11]. For
multi-view PIFu, we simply take the 4-th layer output as feature
embedding and apply average pooling to aggregate the embedding
from different views. Tex-PIFu takes FC(x) ∈ R256 together with
the image feature for surface reconstruction FV (x) ∈ R256 by
setting the number of the first neurons in the MLP to 513 instead of
257. We also replace the last layer of PIFu with 3 neurons, followed
by tanh activation to represent RGB values.

Training procedure. Since the texture inference module re-
quires pretrained image features from the surface reconstruction
module, we first train PIFu for the surface reconstruction and
then for texture inference, using the learned image features FV

as condition. We use RMSProp for the surface reconstruction
following [41] and Adam for the texture inference with learning
rate of 1× 10−3 as in [72], the batch size of 3 and 5, the number of
epochs of 12 and 6, and the number of sampled points of 5000 and
10000 per object in every training batch respectively. The learning
rate of RMSProp is decayed by the factor of 0.1 at 10-th epoch
following [41]. The multi-view PIFu is fine-tuned from the models
trained for single-view surface reconstruction and texture inference
with a learning rate of 1×10−4 and 2 epochs. The training of PIFu
for single-view surface reconstruction and texture inference takes 4
and 2 days, respectively, and fine-tuning for multi-view PIFu can
be achieved within 1 day on a single 1080ti GPU.

Appendix II. Additional Evaluations
Spatial Sampling. In Table 4 and Figure 10, we provide the
effects of sampling methods for surface reconstruction. The most
straightforward way is to uniformly sample inside the bounding
box of the target object. Although it helps to remove artifacts
caused by overfitting, the decision boundary becomes less sharp,
losing all the local details (See Figure 10, first column). To obtain
a sharper decision boundary, we propose to sample points around
the surface with distances following a standard deviation σ from
the actual surface mesh. We use σ = 3, 5, and 15 cm. The
smaller σ becomes, the sharper the decision boundary is the result
becomes more prone to artifacts outside the decision boundary
(second column). We found that combining adaptive sampling
with σ = 5 cm and uniform sampling achieves qualitatively and
quantitatively the best results (right-most column). Note that each
sampling scheme is trained with the identical setup as our training
procedure described in Appendix I.

Network Architecture. In this section, we show comparisons
of different architectures for the surface reconstruction and provide
insight on design choices of the image encoders. One option is to
use bottleneck features of fully convolutional networks [29, 64, 41].
Due to its state-of-the-art performance in volumetric regression for
human faces and bodies, we choose Stacked Hourglass network
[41] with a modification proposed by [27], denoted as HG. Another
option is to aggregate features from multiple layers to obtain multi-
scale feature embedding [6, 26]. Here we use two widely used
network architectures: VGG16 [52] and ResNet34 [23] for the
comparison. We extract the features from the layers of ‘relu1 2’,

! = 5$%! = 3$% ! = 15$%uniform uniform + ! = 5$%

Figure 10: Reconstructed geometry and point to surface
error visualization using different sampling methods.

input HGResNet34VGG16

Figure 11: Reconstructed geometry and point to surface
error visualization using different architectures for the image
encoder.

‘relu2 2’, ‘relu3 3’, ‘relu4 3’, and ‘relu5 3’ for VGG network
using bilinear sampling based on x, resulting in 1472 dimensional
features. Similarly, we extract the features before every pooling
layers in ResNet, resulting in 1024-D features. We modify the first
channel size in PIFu to incorporate the feature dimensions and train
the surface reconstruction model using the Adam optimizer with
a learning rate of 1 × 10−3, the number of sampling of 10, 000
and batch size of 8 and 4 for VGG and ResNet respectively. Note
that VGG and ResNet are initialized with models pretrained with

12



RenderPeople Buff
Methods Normal P2S Chamfer Normal P2S Chamfer
Uniform 0.119 5.07 4.23 0.132 5.98 4.53
σ = 3cm 0.104 2.03 1.62 0.114 6.15 3.81
σ = 5cm 0.105 1.73 1.55 0.115 1.54 1.41
σ = 15cm 0.100 1.49 1.43 0.105 1.37 1.26
σ = 5cm + Uniform 0.084 1.52 1.50 0.092 1.15 1.14

Table 3: Ablation study on the sampling strategy.

RenderPeople Buff
Methods Normal P2S Chamfer Normal P2S Chamfer
VGG16 0.125 3.02 2.25 0.144 4.65 3.08
ResNet34 0.097 1.49 1.43 0.099 1.68 1.50
HG 0.084 1.52 1.50 0.092 1.15 1.14

Table 4: Ablation study on network architectures.

ImageNet [13]. The other hyper-paremeters are the same as the
ones used for our sequential network based on Stacked Hourglass.

In Table 3 and Figure 11, we show comparisons of three
architectures using our evaluation data. While ResNet has slightly
better performance in the same domain as the training data (i.e., test
set in RenderPeople dataset), we observe that the network suffers
from overfitting, failing to generalize to other domains (i.e., BUFF
and DeepFashion dataset). Thus, we adopt a sequential architecture
based on Stacked Hourglass network as our final model.

Appendix III. Additional Results
Please see the supplementary video for more results.

Comparison with Voxel Regression Network. We pro-
vide an additional comparison with Voxel Regression Network
(VRN) [27] to clarify the advantages of PIFu. Figure 12
demonstrates that the proposed PIFu representation can align the
3D reconstruction with pixels at higher resolution, while VRN
suffers from misalignment due to the limited precision of its voxel
representation. Additionally, the generality of PIFu offers texturing
of shapes with arbitrary topology and self-occlusion, which has not
been addressed by the work of VRN. Note that VRN only is able to
project the image texture onto the recovered surface, and does not
provide an approach to do texture inpainting on the unseen side.

Results on Video Sequences. We also apply our approach to
video sequences obtained from [61]. For the reconstruction, video
frames are center cropped and scaled so that the size of the subjects
are roughly aligned with our training data. Note that the cropping
and scale is fixed for each sequence. Figure 13 demonstrates that
our reconstructed results are reasonably temporally coherent even
though the frames are processed independently.

[Jackson et al.]

ours

input

Figure 12: Comparison Voxel Regression Network [27].
While [27] suffers from texture projection error due to the
limited precision of voxel representation, our PIFu repre-
sentation efficiently not only represents surface geometry
in a pixel-aligned manner but also complete texture on the
missing region. Note that [27] can only texture the visible
portion of the person by projecting the foreground to the
recovered surface. In comparison, we recover the texture of
the entire surface, including the unseen regions.
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Figure 13: Results on video sequences obtained from [61]. While ours uses a single view input, the ground truth is obtained
from 8 views with controlled lighting conditions.
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